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Theoretical and experimental convergence results are presented for multigrid and iterative defect correction
applied to finite volume discretizations of the steady, 2D, compressible Navier-Stokes equations. lterative
defect correction is introduced for circumventing the difficulty in finding a soiution of discretized equations
with a second- or higher-order accurate convective part. As a smoothing technique, use is made of point
Gauss-Seidel relaxation with inside the latter, Newton iteration as a basic solution method. The multigrid
echnique appears to be very efficient for smooth as well as non-smooth problems. Iterative defect correc-

tion appears to be very efficient for smooth problems only, though still reasonably efficient for non-smooth
problems.
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1. INTRODUCTION

L.1. Navier-Stokes equations
The Navier-Stokes equations considered are:

with

For a detailed description of t
any standard textbook. Suffice to say here
assumptions made: zero bulk
be laminar and its diffusion coe

ou ov
It 2 N L
ax |pwv dy |wi+p
pu(e+%) pv(e+%)
(L.1a)
0 0
1 9 |™= 3 " =0
—R? dx Txy a}’ Ty 5
11 9? 113
Txxu+'rxyv+ _l'P—r'ia;‘l Tyyv+7xyu+7_l Pr 3}’
—40u 23
™ T 3% 39y
o, & (1.1b)
Ty = )% * ax’
4% 20
T3y 3

viscosity an

he various quantities used, assumptions

made and so on, we refer to
that these are the full Navier-Stokes equations with as main
d constant diffusion coefficients. (So, the flow is assumed to
fficients are assumed to be temperature independent.)

165



1.2. Discretization method
For a detailed description of the discretization method, we refer to [8,9]. Here, a brief summary is
given of its main characteristics only.

Since we also want to be able to compute Euler flow solutions (with possibly occurring discontinui-
ties), the Navier-Stokes equations (1.1) are discretized in integral form. A straightforward and simple
discretization of the integral form is obtained by subdividing the integration region into finite
volumes, and by requiring that the integral form holds for each finite volume separately. This discreti-
zation requires an evaluation of a convective and diffusive flux vector at each volume wall.

1.2.1. Evaluation of convective fluxes. Based on experience with the Euler equations [3,4,5,6,7,11], for
the evaluation of the convective fluxes we prefer an upwind approach. In here, the convective flux vec-
tor is assumed to be constant along each volume wall, and to be determined by a uniformly constant
left and right state only. For the 1D Riemann problem thus obtained, an approximate Riemann
solver is applied.

The choice of the left and right state, to be used as entries for the approximate Riemann solver,
determines the accuracy of the convective discretization. First-order accuracy is simply obtained by
taking the left and right state equal to that in the corresponding adjacent volume [5]. Higher-order
accuracy is obtained by applying low-degree piecewise polynomial functions, using two or three adja-
cent volume states for the left and right state separately [3]. The higher-order accurate polynomial
function used is van Leer’s k-function [13]. This function is general in the sense that it contains a vari-
able ke[—1,1] that can be used for chosing any higher-order approximation ranging from central
(k=1) to fully one-sided upwind (k=-1). A survey of some characteristic k-values and their
corresponding properties in the case of Euler flow computations has been given in [7]. As an optimal
value for « in the case of Navier-Stokes flows, we found by error analysis: k=1/3 [10]. For this
specific k-value, we also constructed a new (monotonicity preserving) limiter [10].

For the approximate Riemann solver, we considered two possibilities which both have continuous
differentiability (a prerequisite for applying Newton’s method), namely OSHER’s [14] and van LEER’S
[12] scheme. Theoretical analysis has shown that Osher’s scheme is to be preferred above van Leer’s
scheme [10]. This has been confirmed by computations [10].

1.2.2. Evaluation of diffusive fluxes. For the evaluation of the diffusive fluxes, use is made of the stan-
dard central technique as outlined in [15]. For the necessary computation at each volume wall of
Vu, Vv and Vc?, the technique uses (at inner volume walls) a shifted volume overlying the volume
wall considered.

2. CONVERGENCE OF MULTIGRID

The same multigrid method which has been used with success for the first-order discretized Euler
equations [5] is taken as a point of departure for both the first- and second-order discretized Navier-
Stokes equations. The method makes use of symmetric point Gauss-Seidel relaxation as a smoothing
technique. In here, one or more Newton steps are performed for the collective relaxation of the four
state vector components in each finite volume. (Usually, the tolerance for the Newton iteration is so
large that in a substantial majority of all cells, only one Newton step is performed.) For the first-order
discretized Euler equations, point Gauss-Seidel relaxation turned out to be a good smoother, thus ena-
bling a good multigrid acceleration. However, for higher-order discretized Euler equations the good
smoothing property is lost. Obviously, this will also be the case for Navier-Stokes flows with high
Reynolds number. We do not anticipate to this by looking for some remedy already, but we
investigate at first how smoothing evolves with increasingly dominating convection. The complete
multigrid method as developed for Euler (see [11] for a detailed description) is carried over to
Navier-Stokes, with as the only a priori change, a replacement of the piecewise constant correction
prolongation by a bilinear prolongation [8], thus satisfying the rule that the sum of orders of the pro-
longation and restriction should exceed the order of the differential equation (m,+m,>2m) [l].
Notice that as a consequence the Galerkin property [5] is definitely lost.

2.1. Investigation method

Both theoretical and experimental convergence results are presented; the theoretical results being
obtained by local mode analysis, the experimental results being obtained by considering two standard
flow problems; a smooth and a non-smooth problem.
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2.1.1. Smoothing analysis. For the smoothing analysis we consider the linear and scalar convection
diffusion equation

du | du _ *u Ru, _
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For the integral form to be considered for each finite volume Qo j=12,..J, k=12,..,K, we take:
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with 8%; the boundary of Q. The two parts of the discretization to be modelled are (i) an upwind
treatment of convection, elther first- or higher-order accurate (non-limited k=1/3), and (ii) a central
second-order accurate treatment of diffusion. Assuming a finite volume grid with equidistant walls
parallel to the x- and y-ax.is (Ax=Ay=h, fig. 2.1), the evaluation of convective flux terms yields:
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and similar expressions for (%)j,%.k,(%)j_k_% and (%l)j,k_%. In (2.4b), 92444 and 0% e+

denote the boundary of shifted volume ; + 1 respectively 2« +x (fig- 2.2).
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Fig. 2.2. Shifted volumes

With the previous flux evaluations we get for each finite volume £, the algebraic equation:
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The parameter ¢/ in (2.5) and (2.6) models the inverse of the mesh Reynolds number. Of course, for
the model grid considered, the finite volume discretization boils down to a finite difference discretiza-
tion for which the above stencil can be given directly. The purpose of the previous finite volume
derivation merely is to illustrate for a model problem, the way of evaluating the intricate convective
and diffusive fluxes arising for (1.1).

For point Gauss-Seidel relaxation applied to (2.5), four basically different sweep directions can be
considered: downwind, upwind and twice crosswind. Introducing the counter n for the number of
sweeps performed, these four possibilities can be illustrated as has been done in fig. 2.3. (In fig. 2.3,
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Fig. 2.3. Basic sweep directions. convection direction: /
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For local mode analysis, we introduce in the standard way: (i) the iteration error

Ok = ujx—uly, @7
with u}_k the converged numerical solution in € x» and: (ii) the Fourier form
7.1( - D[L"el(u'j+w’kvl,

(2.8)
with D some constant, y the amplification factor, and w; and w, the error frequency in j- respectively
k-direction. The frequencies to be considered are: m/2h<|w|,|wy|<m/h. By introducing (2.8) into
(2.5), defining 6, = w, h,6, =w, h, and considering for instance the downwind relaxation sweep, we get:
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Results for this smoothing analysis are given in section 2.2.

2.1.2. Experiments. The smooth flow problem considered is a subsonic flat plate flow at Re =100, for
which we can use the Blasius solution [16] as a reference solution. The non-smooth problem con-
sidered is a supersonic flat plate flow at Re=2.96 10°, with an oblique shock wave impinging upon
the flat plate boundary layer. This problem has been taken from [2]. For both flow problems, use is
made of: y=1.4 and Pr=0.71.

Geometry and boundary conditions as applied for the subsonic flat plate flow are given in fig. 2.4.
As far as convection is concerned, the eastern boundary is considered to be an outflow boundary. For
diffusion, the northern, southern and eastern boundary are assumed to be far-field boundaries with
zero diffusion. For this subsonic problem we only apply grids composed of square finite volumes. The
coarsest grid in all multigrid computations is the 4X2-grid given in fig. 2.4. For details about boun-
dary conditions and so on, we refer to [8].

conv:p=1
diff: zero
east
u=0.5 ‘
conv:{v=0 conv:p=1
c=1 7 rnorth south  yifr sero
diff: zero
west
conv: wall conv: wall conv: wall

diff: symmetry diff: adiabatic wall diff: symmetry

Fig. 2.4. Geometry, boundary conditions and coarsest grid subsonic
flat plate flow (conv: convection, diff: diffusion)

Geometry and boundary conditions for the supersonic flat plate flow are indicated globally in fig.
2.5. For details see again [8). In all multigrid computations, the coarsest grid applied is the 5X2-grid
given in fig. 2.5. The grid has been optimized for convection by introducing a stretching in j-
direction, and in particular by aligning it with the impinging shock wave [9). A grid adaptation for
diffusion has been realized by introducing stretching in k-direction only. Notice that this problem
essentially differs from the previous problem, both in flow and in grid.
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Fig. 2.5. Geometry, boundary conditions and coarsest grid super-
sonic flat plate flow (conv: convection, diff: diffusion)
2.2. Results

2.2.1. First-order discretized equations. For the first-order accurate model discretization we have
a; =ay=0,a; = 1. With this the general 11-point stencil (2.6) reduces to the following 9-point stencil

1 e € 1€
k1) 9y “E | T
k —(1+%) 2+4% —% (2.10)
Te € 1€
k—1 "‘2’7 —(1+71-) ’Z—/'l-
j-1 j j+1

Introducing the iteration error in the way suggested before we get the smoothing results given in fig.
26. In fig. 2.6a, for each of the four possible sweep directions, the smoothing factor
s =sup|u(8,, 8>)|, 7/2<|6,|, |6|<7 is given as a function of e/h. In fig. 2.6b, for e/h=1, the
corresponding distributions |u(8;,6,)|, 7/2<|6,|,|6;|<m are given. (All four distributions are point-
symmetric with respect to #, =0,8,=0.) Clearly visible in fig. 2.6a is the good smoothing for any
value of ¢/h and any convection direction, when sweeping alternatingly in all four different directions
(for instance by applying symmetric sweeps and by using a different diagonal sweep direction in pre-
and post-relaxation). Robustness and efficiency seem to be ready to hand.

For the subsonic flat plate flow, the multigrid method’s behaviour is illustrated in fig. 2.7a. The
measure of grid independence is illustrated by convergence histories obtained on a 16X 8-, a 32X 16-
and a 64X 32-grid. For the flow considered, the method appears to be nearly grid independent. In the
same figure, the multigrid effectiveness is illustrated by giving the convergence history for a single grid
computation on the 64X32-grid. Further, in the same figure, the influence of the higher-order accu-
racy of the prolongation is illustrated by giving also the convergence history for a strategy with m, =1
(so violating the rule m, +m,>2m [1]). In agreement with {18), for this convection dominated flow,
the positive influence of the second-order prolongation already appears to be negligible. Using the
Blasius solution as a reference, in [8] it is shown that only a single FAS-cycle is sufficient for converg-
ing to discretization error accuracy.

For the supersonic flat plate flow, results are shown in fig. 2.7b for a 20X8-, a 40X 16- and a
80X 32-grid. Here we used the first-order prolongation only. Despite of the slight deterioration with
respect to the subsonic flow, the multigrid properties are still acceptable.
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2.2.2. Second-order discretized equations. For the second-order accurate model discretization we have:
oy =~ 1/6,a,=5/6,a3=1/3 [9]. With these values, (2.6) becomes

o [ 3
k % —a+5 | e [ -1 @1
R = BT
k=2 +
j-2 -1 j j+1

For the four basic sweep directions, this yields the smoothing results given in fig. 2.8. Only for e/h>1
there is some valuable smoothing. For problems which are locally convection dominated, say with
€/h<<1 locally, the present smoothing factors are unacceptable, except perhaps for those belonging
to the purely downwind sweep. Since purely downwind relaxation sweeps are not feasible in practice,
and since no specific alternation of sweep directions suffices, another remedy has to be found.
Inspired by its rather successful application in the Euler flow method [3,7), iterative defect correction
is considered for this purpose.
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Fig. 2.8. Smoothing  factors point  Gauss-Seidel relaxation,
second-order discretized model equation
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3. CONVERGENCE OF ITERATIVE DEFECT CORRECTION
The iterative defect correction (IDeC-) method can be written as:

i‘"h(qil,) =0,
Fl(gh™") = Fu(gh)—wFu(gh). n=12...N.

with the superscript n denoting the iteration counter and w a possible damping factor. (A standard
value for w is w=1.) The two discrete operators considered are: the higher-order accurate operator F
which for the model problem is defined by (2.11), and: the approximate operator Fj, the operator to
be inverted. A requirement to be fulfilled by F as seen in section 2.2.2, is that it must have a first-
order accurate convective part only. The choice of the diffusive part is still free. Two in this sense
extreme possibilities are already available: (i) the operator without diffusive terms as used in the Euler
work, and (ii) the operator with second-order accurate diffusion as just considered in section 2.2.1.
The advantage of the first approximate operator is its greater simplicity. For the second operator this
is its closer resemblance to the target operator F,. It complies with the theory that for sufficiently
smooth problems, the solution will be second-order accurate after a single IDeC-cycle only [1]. As an
intermediate alternative we also consider the approximate operator which neglects the cross deriva-
tives. This operator will combine, in some sense, simplicity and good resemblance.

As in section 2, both theoretical and experimental results are presented. The theoretical results are
obtained by local mode analysis for the same model problem as in section 2, and the experimental
results are obtained by considering the same two flow problems as in section 2. Local mode analysis
is made for both the outer and inner iteration (convergence respectively smoothing analysis).

(3.0

3.1. Theoretical results
Concisely written, the three approximate operators to be considered are: (i) the first-order accurate
convection operator

l/: -1 L= ~2 1 (32)
=t
(ii) the zeroth-order accurate convection-diffusion operator
-£
k+1 I
k (—(l+7€'—) 2+4% —%] (3.3)
—(q+<
k—1 a+ 7 )
Jj=1 J jt1

and, (iii) the first-order accurate convection-diffusion operator (2.10).
For the linear model problem (2.1), iteration (3.1) can be rewritten as

Fh(ul]l) =0,
Fu@d*Yy = (F—wF)uh), n=12,...N.

Introducing as before the iteration error (2.7) in its Fourier form (2.8), we can write for the conver-
gence factor pu:

w(;.6,) = 1—wFy(6,6)F; ' (6,.0,), 0<|8, .6 |<m. (3.5)

For w=1, convergence results are given in fig. 3.1. In fig. 3.1a, for each of the three approximate
operators (3.2), (3.3) and (2.10), the convergence factor p.=sup|u(6).6)|, 0=1, O<|0~,|,|()2.|<1.1 is
given as a function of e/h. In fig, 3.1b, for e/h=4/9, e/h=1 and e/h = oo, the corresponding distribu-
tions of |uf;,8;)|, w=1, 0<|8,|, |62]<m are given. (Again, all distributions are point-symmetric with
respect to 8, =0, §:=0.) From fig. 3.1a it appears that for small values of e/A, the approximate opera-
tor (3.2) yields the best convergence rate. However, as was to be expected, its convergence starts to
deteriorate (from e¢/h =4/9) and finally turns into divergence. Even for high-Reynolds number flows,
local regions with diffusion dominating convection may arise. Therefore, approximate operator (3.2)
has to be rejected. As far as the convergence rate of the two remaining operators is concerned, the 9-
point operator (2.10) clearly is to be preferred above the 5-point alternative (3.3).

(34
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Fig. 3.1. Convergence factors iterative defect correction, second-
order discretized model equation

174




However, the 5-pointer might behave better in the inner iteration (Gauss-Seidel accelerated by mul-
tigrid). In fig. 3.2, for the four basic sweep directions, its smoothing factors y, are given as a function
of e/h. The smoothing factors which were already presented for the 9-point operator (fig. 2.6) have
been added. It appears that both operators practically have the same good smoothing behaviour, the
5-pointer being only slightly better. Because of its superior behaviour in IDeC, we prefer the 9-pointer
as operator to be inverted. (Its relative complexity is taken for granted.)

9-point operator

S-point operator

downwind

9-point operator

/ L; 5-point operator

upwind

k &( 9-point operator

\ E 5-point operator

crosswind

k i & ——— 9-point operator

\ b S-point operator

crosswind -

Fig. 3.2. Smoothing factors point Gauss-Seidel relaxation, zeroth-
and first-order discretized model equation
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3.2. Experimental results

For the subsonic flat plate flow, results are shown in fig. 3.3. Given for the 16X8-, 32X 16- and
64X 32-grid is the velocity profile obtained on the middle of the plate after 1 and 50 IDeC-cycles. (In
all cases we performed a single FAS-cycle per IDeC-cycle only.) In agreement with theory [1], only a
single IDeC-cycle appears to be sufficient for obtaining higher-order accuracy.

VRe/xy
2

T T T T T T
0.6 0.8 1 0.2 0.4 0.6 o.8

0.2 0‘.1 DT_S 0‘.5 0'.2 D’A
u/ug u/ug u/ug

a.On 16 X 8-grid b.On 32 X 16-grid c. On 64 X 32-grid

Fig. 3.3. Velocity profiles subsonic flat plate flow, Re =100, x =0.5
(O: after 1 IDeC-cycle, O : after 50 IDeC-cycles,
----- : Blasius solution)

For the supersonic flat plate flow, the second-order accurate results are given in fig. 3.4. Here, we
had to use the limiter, and further we had to take w=%. Compared with the subsonic flat plate flow,
again a decrease in convergence rate is observed.

ulug

Fig. 3.4. Velocity profiles supersonic flat plate low, Re = 2.96
10°, x=1 ( O: after 1 IDeC-cycle, O : after 50 IDeC-
cycles)
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4. CONCLUSIONS
For the first-order discretized Navier-Stokes equations, point Gauss-Seidel relaxation accelerated by
multigrid has been applied to the target equations directly. Both theory and practice show a fast con-
vergence for smooth problems. For problems with non-smooth solutions and (consequently) non-
uniform grids, practical computations show the same.

For the second-order discretized equations, iterative defect correction has been introduced, with
point Gauss-Seidel and multigrid applied to the first-order discretized equations as an approximate
solver. Both theory and practice show a fast convergence for smooth problems. For problems with
non-smooth solutions and non-uniform grids the convergence rate is less good, though still satisfac-
tory.
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